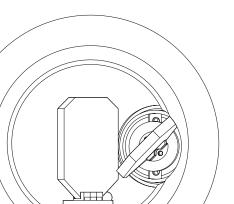


compact design. modular usage. straightforward integration.

The fiberSYS is a 3D scan system for lasers in the 1kW power range. It is based on a low-drift xy scan module and a fast and precise z-axis. The fiberSYS offers a compact sealed housing with a direct fiber connection. This speeds up and facilitates the installation in laser processing machines.

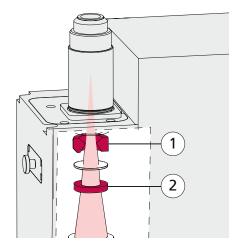

For multi-head systems, the narrow footprint of the fiberSYS allows for maximum overlap of the image fields, which benefits the user through increased productivity of the laser machine.

Key features:

- Modular, compact 3D scan system with integrated z-axis
- Maximum image field overlap in multi-head systems
- Low-drift galvanometer scanner thanks to digital encoders
- Optimized for 1 kW single-mode laser
- Interface for process monitoring

Typical applications:

- · Additive manufacturing
- Laser welding
- 3D applications



Optimum integratability

The fiberSYS was designed to simplify integration for machine manufacturers. This is achieved by the following features:

- Fully integrated beam guidance from the fiber adapter, including z-axis
- Efficient water cooling for galvanometer scanners, electronics and beam entrance aperture
- Flexible installation options: top, bottom, front face
- Sealed optics path in a dust- and splashproof housing (IP 64 rating)
- Torsion-resistant main body ensures a high positional stability of the sub-modules relative to one another
- Compact optical design
- Replaceable protective window on the beam entrance side prevents contamination when changing the fiber

 Possibility to adapt for a range of lasers by replacing the aperture (1) and diverging lens (2). Thereby, the external dimensions and interfaces remain identical.

Status and process monitoring

- Optomechanical interface for coaxial process monitoring
- High transmission over a wide range of wavelengths
- Can be individually adapted to sensor concept
- Record all key status variables in real time (iDRIVE technology)
- Scan mirror monitoring via contactless temperature sensors

Optional additions:

- Open Interface Extension (OIE): Synchronization of sensor and position data for spatially resolved measurements
- Beam splitter cube for simultaneous connection of different sensors, e.g. pyrometer, camera and/or OCT sensor

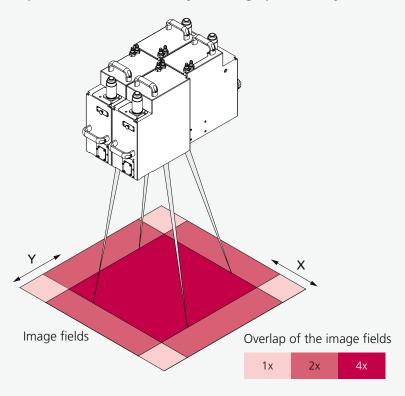
Direct fiber connection

Replaceable protective window

Process monitoring port with beam splitter cube

Applications

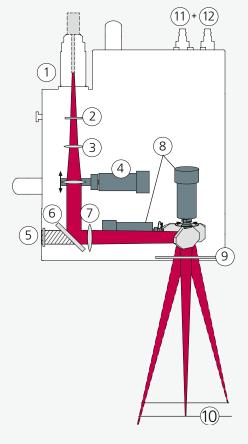
Additive manufacturing (PBF-LB/M)



Welding bipolar plates for fuel cells

Electromobility

Expansion to a multi-head system: High productivity thanks to maximum image field overlap

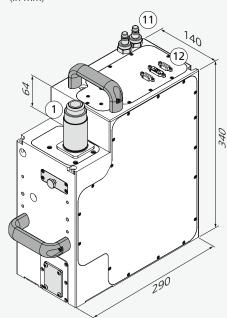

Advantages

- Galvo-based z-axis allows for a slim design, which means 3D scan systems can be arranged in rows (in the x direction) close to one another
- Denser packing than standard systems (in the y direction) thanks to optimized arrangement of the galvanometers in the xy sub-module
- CalibrationLibrary software package (optional) provides support during scan field calibration

Benefits for the user

- Shorter process times due to simultaneous processing of a component using multiple lasers
- Improved productivity thanks to parallel processes in a given process chamber
- Optimized duty cycle of the laser and 3D scan system due to flexible use of the available lasers throughout the entire construction area

Operating principle



Legend

- 1 Fiber adapter
- 2 Replaceable protective window
- 3 Diverging lens
- 4 Galvanometer scanner collimation optics and z-axis
- 5 Connection for process monitoring with protective window
- 6 Tilted mirror
- 7 Pre-focus optics
- 8 Galvanometer scanner with digital encoders
- 9 Protective window
- 10 Focal plane
- 11 Cooling water connections
- 12 Electrical connections

Dimensions

(in mm)

fiberSYS - Preliminary specifications

(all angle specifications optical)

Typical optical configurations (1)

Image field size [mm²]	450 x 450	550 x 550	650 x 650
100% overlap per image field [mm²]	308 x 323	408 x 423	508 x 523
2x2 scanner			
Free working distance from	495	615	730
lower edge of scan system [mm]			
Rayleigh length [mm]	1.8	2.6	3.5
Average focus diameter in the	55	65	75
image field [μ m] $^{(2)}$			
Defocus diameter [µm]	approx.	approx.	approx.
	200 – 250	200 - 250	200 – 250

Collimation

	Config. 1	Config. 2
Limiting NA	160 mrad	224 mrad
(full angle)		
Colimation focal length	180 mm	135 mm
Typ. beam divergence	100 mrad	140 mrad
(full angle, 1/e²)		
Fiber diameter	14 µm	10 μm

The laser in use determines the appropriate configuration. Further configurations on request.

General specifications

Aperture	30 mm
Wavelength	1060 – 1085 nm
Max. laser power	1 kW
Wavelength range for process monitoring (3)	800 – 870 nm and 1450 – 2000 nm
Supply voltage (Requirements)	48 V DC max. 6 A
Dimensions LxWxH in mm (4)	290 x 140 x 340
Interface	SL2-100
Water cooling	3 l/min Δp < 4,5 bar
IP code	IP 64
Weight	approx. 20 kg

Precision & stability

Repeatability (RMS)	<0.4 µrad	
Position resolution	20 Bit	
Nonlinearity	<0,5 mrad/44°	
Dither	< 1.6 µrad	
Temperature drift		
Offset	< 25 µrad/K	
Gain	< 8 ppm/K	
Long-term drift		
8-hr drift (after 30 min)		
Offset	< 30 µrad	
Gain	< 30 ppm	
24-hr drift (after 3 hrs)		
Offset	< 30 µrad	
Gain	< 30 ppm	

Dynamics

Process speed (5)	5 m/s	
Step response (6)		
1% full scale	1 ms	
10% full scale	3.3 ms	
Tracking error	< 0.4 ms	
XY sub-module		
(standard tuning)		
Tracking error	< 0.84 ms	
Z-axis		

⁽¹⁾ Other configurations on request

Options

Expansions for process monitoring

- Synchronization of sensor data with RTC data possible using Open Interface Extension (OIE)
- Additional monitoring port via beam splitter cube

Tilted mirror (variants)

- HR mirror for the laser
- Dichroitic beam splitter for process monitoring

Fiber adapters

- QBH/HLC-8
- QD/LLK-D

More information about the fiberSYS in video form:

10/2021 Information is subject to change without notice.

Product photos are non-binding and may show customized

 $^{^{(2)}}$ At z=0, M²=1.05, typ. beam divergence

 $^{^{(3)}}$ Other wavelengths on request

⁽⁴⁾ Dimensions without fiber adapter, handles and plug connections

⁽⁵⁾ For an image field of 550 mm²

⁽⁶⁾ Adjusted to 1/1000 full scale